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Abstract. In this paper, the principles of the general relativity are used to formulate quantum wave
equations for spin-0 and spin-1/2 particles. More specifically, the equations are worked in a Schwarzschild
like metric. As a test, the hydrogen atom spectrum is calculated. A comparison of the calculated spectrum
with the numerical data of the deuterium energy levels shows a significant improvement of the accord, and
the deviations are almost five times smaller then the ones obtained with the Dirac theory. The implications
of the theory considering the strong interactions are also discussed.

1 Introduction

The general theory of the relativity, proposed in 1916 by
Einstein, was one of the major scientific discoveries of last
century. Besides providing very accurate theoretical re-
sults, it was a great advance in the understanding the
Nature, dealing with the structure of the space-time.

A question of interest is how the quantum theory can
be affected by the space-time. Dirac, formulated his theory
[1], based in the flat space-time of the special theory of
the relativity, and with this formulation, the spin and the
antiparticles appeared naturally into the theory.

About curved spaces, many authors, as for example
[2,3], [4] proposed methods to quantize the gravity, where
still there are many difficulties and opened questions to
be understood.

In this work, a different point of view is proposed. Here,
instead of trying to quantize the gravity, the effects of the
metric in the subatomic world will be studied. For this
purpose, the basic idea is to describe a particle in a region
with a potential that affects the metric of the space-time.
We are not interested in gravitational effects, as in [5],
where the effect of gravitational forces in the hydrogen
atom spectrum has been included. So, the gravitational
potential will be turned off and only the other interac-
tions (strong, electromagnetic) will be considered. Observ-
ing that the masses of the particles are very small, and the
small value of the gravitational coupling, when compared
with the electric or strong ones, one can say that it is an
excellent approximation. Inside this space-time, curved by
the interaction, according to the general covariance, quan-
tum wave equations will be proposed. Then some simple
applications will be made, in order to verify the predic-
tions of the theory.

This paper will show the following contents: In Sect. 2
the operators in the Schwarzschild metric will be calcu-
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lated, in Sect. 3, a brief review of the dynamics will be
made, in Sects. 4 and 5 the quantum wave equations
will be proposed. In Sect. 6 we will apply the theory to
the hydrogen atom, calculating its energy spectrum and
in Sect. 7, the strong interactions will be considered. In
Sect. 8, the conclusions will be presented.

2 The metric

In this section we will calculate the operators (E, p, p2)
needed in order to write the wave equations, using the
general relativity principles. As a first step, a system with
spherical symmetry will be considered, but the basic ideas
can be generalized to systems with arbitrary metrics.

We will consider a particle inside a field, that may be
described by a potential function V . The source of the field
(a mass for a gravitational field or a charge for an electro-
magnetic field) will have some distribution, described by
a tensor Tµν �= 0, in a certain space region.

Outside of the source distribution, on the empty space
(where Tµν �= 0) if we consider a system that presents
spherical symmetry, with a central potential V (r), the
space-time may be described by a Schwarzschild like met-
ric [6–8],

ds2 = ξ dτ2 − r2(dθ2 + sin2 θ dφ2) − ξ−1dr2 , (1)

where ξ(r) is determined by the interaction potential V (r),
and is a function only of r, for a time independent inter-
action. ξ(r) will be studied in detail in Sec. III. As we can
see in (1), the metric tensor gµν is diagonal

gµν =



ξ 0 0 0
0 −ξ−1 0 0
0 0 −r2 0
0 0 0 −r2 sin2 θ


 , (2)
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and can be written in the form

gµν = h−2
µ ηµν , (3)

where

ηµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 . (4)

Using these definitions, we can calculate the operators

∇i = h−1
i

∂

∂xi
, (5)

p = −i�∇ . (6)

According to the above expressions, the momentum oper-
ator may be defined as

p = −i�
[
r̂
√
ξ
∂

∂r
+
θ̂

r

∂

∂θ
+

φ̂

r sin θ
∂

∂φ

]
, (7)

that in a region with V = 0 (ξ = 1) is the usual momentum
operator in spherical coordinates

p = −i�
[
r̂
∂

∂r
+
θ̂

r

∂

∂θ
+

φ̂

r sin θ
∂

∂φ

]
. (8)

The energy operator is defined as

E = i�∇0 =
i�

h0

∂

∂t
=

i�√
ξ

∂

∂t
(9)

that for V = 0,

E = i�
∂

∂t
. (10)

The Laplacian is calculated using [7]

∇2 = (h1h2h3)−1
[
∂

∂x1

h2h3

h1

∂

∂x1
+

∂

∂x2

h1h3

h2

∂

∂x2

+
∂

∂x3

h1h2

h3

∂

∂x3

]
, (11)

where hi are given in (2), so

|p|2 = −�
2
[√

ξ

r2
∂

∂r

(
r2
√
ξ
∂

∂r

)
+

1
r2sin θ

∂

∂θ

(
sin θ

∂

∂θ

)

+
1

r2sin2θ

∂2

∂φ2

]
. (12)

If one defines the momentum components as pi =
−i�∇i, one can observe that they are not good opera-
tors, these operators does not commute and are not even
Hermitians, so the definition [10]

pi =
1√
D

∂

∂xi

√
D , (13)

where D =
√−g, with g = det(gµν), will be used. With

this definition,

pr = −i�
(
∂

∂r
+

1
r

)
(14)

pθ = −i�
(
∂

∂θ
+ cotgθ

)
(15)

pφ = −i�
(
∂

∂φ

)
, (16)

and the commutation rules are[
pi, q

j
]

= −i�δj
i (17)

[pi, pj ] =
[
qi, qj

]
= 0 . (18)

The Laplacian can be expressed as

∇2 =
(
pr − i�

ξ

∂ξ

∂r

)
ξ

(
pr − i�

ξ

∂ξ

∂r

)
+

1
r2
p2

θ +
1

r2 sin2 θ
p2

φ

+
3
4
∂ξ

∂r
− 1

4
∂2ξ

∂r2
, (19)

that for weak potentials is just

∇2 = p2
r +

1
r2
p2

θ +
1

r2 sin2 θ
p2

φ . (20)

With the operators calculated in this section, one can
obtain the relativistic quantum wave equations. If another
symmetry is important (as axial symmetry, for example ),
the operators can be obtained in a similar way in the given
metric.

3 Schwarzschild dynamics

In order to obtain the wave equations, two expressions are
needed: the energy and ξ(r). Then, also with the function
of setting the notation, it is useful to make a brief review
of the dynamics, in the Schwarzschild metric, and to show
how the quantities of interest can be expressed.

From (1), the proper time is

dτ0 =
√
ds2 = dτ

√
ξ − β2

r

ξ
+ r2β2

t = dτ/γs , (21)

with
γs =

1√
ξ − β2

r

ξ + r2β2
t

, (22)

where βr and βt are the the radial and transverse parts of
β, respectively. They are defined as

β =
dx

dτ
, (23)

βr =
dr

dτ
, (24)

βt =

[(
dθ

dτ

)2

+
(
dφ

dτ

)2

sin2 θ

]1/2

(25)
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The principle of least action states that

S =
∫
L dt = −m0c

2
∫
ds

= −m0c
2
∫
dτ

√
ξ − β2

r

ξ
+ r2β2

t , (26)

where m0 is the rest mass of the particle. Then, the La-
grangian can be expressed as

L = −m0c
2

√
ξ − βr

ξ
+ r2β2

t = −m0c
2/γs . (27)

The momentum four-vector is defined as

pµ = E0β
µ = E0γs(1,β) = (p0,p) (28)

pµ = (ξ p0,−ξ−1 p1,−r2p2,−r2 sin2 θ p3) , (29)

where
E0 = m0c

2 . (30)

The equivalence principle provides the relation

dβ0

dτ
= −Γ 0

µνβ
µβν , (31)

that gives

γs
dp0

dτ
= E0Γ

σ
0νβσβ

ν = E0
[
Γ 1

00β1β
0 + Γ 0

01β0β
1] = 0 .

(32)
So, the energy defined as

p0 = E = ξγsE0 =
m0c

2ξ√
ξ − β2

r

ξ + r2β2
t

, (33)

is a constant of motion. The other constant is Lz = p3/c.
In the rest frame of the particle

p0µp
µ
0 = −E2

0 = −m2
0 c

4 , (34)

that is a Lorentz invariant, so

pµp
µ = p2c2 − E2

ξ
= −m2

0 c
4 (35)

and then, the energy relation is

E2

ξ
= p2c2 +m2

0c
4 , (36)

or
E√
ξ

=
√
p2c2 +m2

0c
4 . (37)

The expressions (36) and (37) will be used to construct
the Hamiltonian operators.

The term ξ is a function of r, and can be determined
if we observe (37)

E(β = 0) = E0ξ
1/2 = E0 + V , (38)

that means that in the rest frame of the particle, the en-
ergy is due to the sum of its rest mass with the potential.
Then

ξ1/2 = 1 +
V

E0
= 1 +

V

m0c2
. (39)

Comparing with the standard definition of the
Schwarzschild mass

ξ = 1 − 2 ms

r
= 1 +

2V
m0c2

+
V 2

m2
0c

4 , (40)

it is possible to make the identification

ms = −r

2

(
2V
m0c2

+
V 2

m2
0c

4

)
, (41)

that for general potentials may be a function of r.
For weak potentials,

ξ ∼ 1 +
2V
m0c2

. (42)

and
ms ∼ − V r

m0c2
(43)

that are the usual expressions of general relativity,

ξG =
(

1 − GM

r c2

)2

∼ 1 − 2GM
r c2

. (44)

4 Spin-0 particles wave equation

With the knowledge of the energy equation (36) and ξ(r)
(39), it is possible to formulate wave equations in the
Schwarzschild metric. The simplest case is to obtain the
equation for spin-0 particles. For this purpose, the proce-
dure to be followed is the same one that is used to de-
termine the Klein-Gordon equation, that is based in an
operator for E2. Using the relation (9)

E2

ξ
= −�

2

ξ

∂2

∂t2
(45)

and (36) the quantum wave equation, based on general
relativity, for spin-0 particles is

−�
2

ξ2
∂2Ψ

∂t2
= −�

2c2∇2Ψ +m2
0c

4Ψ , (46)

with ∇2 defined in (11).
This equation can be separated in the standard way,

yielding

Ψ(r, θ, φ, t) = u(r)Y m
l (θ, φ)e−iEt/� , (47)

where Y m
l (θ, φ) are the spherical harmonics. The radial

equation is then
√
ξ

r2
∂

∂r

(
r2
√
ξ
∂

∂r

)
u

+
(

E2

�2c2ξ2
− m2

0c
2

�2 − l(l + 1)
r2

)
u = 0 , (48)

and can be solved for a given interaction potential V (r),
that determines ξ(r).
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5 Spin-1/2 particles wave equations

The next step, is to obtain the analog of the Dirac equa-
tion, for spin-1/2 particles. It can be made in the same
way that it was made by Dirac [1], using an Hamiltonian
with the α and β Dirac matrices, instead of an energy
operator with an square root (37). Then we have

i�

ξ

∂

∂t
Ψ =

(−i�c α.∇ + βm0c
2)Ψ , (49)

and if we square the operators in both sides of the equa-
tion, we obtain the wave equation (46), that proofs that
the procedure used by Dirac, is also valid in this case.

Separating the time dependent part

T (t) = A e−iEt/� , (50)

we will have the spatial equation,(
−i�c α.∇ + βm0c

2 − E√
ξ

)
ψ(r) = 0 . (51)

Observing the relation

α.∇ =
ξ

r
α.r

[
ξ1/2r

∂

∂r
+ αr

(
αθ

r

∂

∂θ
+

αφ

r sin θ
∂

∂φ

)]
.

(52)

and the angular part of the operator of (52), one concludes
that the angular part of ψ(r) can be described in terms
of the two component spinors χµ

k , [9],

χµ
k =

∑
m=±1/2

C(l, 1/2, j;µ−m,m)Y µ−m
l (θ, φ)χm , (53)

where C(l, 1/2, j;µ−m,m) is a Clebsh-Gordan coefficient,
χm, a Pauli spinor and

k = l for j = l − 1/2 ,

k = −l − 1 for j = l + 1/2 , (54)

that gives
k = ±(j + 1/2) . (55)

Then, the wave function is expected to have the struc-
ture

ψ =

(
F (r)χµ

k

iG(r)χµ
−k

)
, (56)

with the F and G functions obeying

√
ξ
dF

dr
+ (1 + k)

F

r
=
(
E√
ξ

+m0

)
G

√
ξ
dG

dr
+ (1 − k)

G

r
= −

(
E√
ξ

−m0

)
F , (57)

that are equations very similar to the ones obtained from
the Dirac theory. In the following sections, some physical
implications of this theory will be studied.

6 The hydrogen atom

In this section we will study the behavior of the theory,
in a very well known system, the hydrogen atom. In the
hydrogen atom, the electron is submitted to an electric
central potential (obviously with Z = 1)

V (r) = −αZ

r
, (58)

then the ξ function becomes (where ep means electron-
proton)

ξep =
(

1 − αZ

mec2 r

)2

, (59)

where me is the electron mass. This function represents
a space-time curved by the ep interaction, or how space-
time is seen by the electron. At this point we can see an
interesting feature of the theory: when general relativity is
used to study the gravitation, the radius where the metric
breaks (ξ = 0) , that is the Schwarzchild radius, rs, is
always negligible, as for example r =2.95 Km for the sun.
But in the hydrogen atom (with the parameters of [15])

rs =
α

mec2
= 2.818 fm , (60)

that is the classical radius of the electron, which is obvi-
ously not negligible. The estimated radius of the proton
is about 0.9-1.0 fm, so, it is located inside the horizon of
events. Then, the electric charge will be confined inside
this region by a trapping surface, as defined in [14], and
outside, only effects of the total charge can be probed by
the electron, and no information about the inner structure
can be obtained.

Inserting ξep from the expression (59) in (57) we ob-
tain the equations, but valid only for r > rs. Inside the
horizon of events, the metric is not the same, the energy-
momentum tensor Tµν determined by the charge and mat-
ter distributions must be considered. In this paper we shall
study only the outside behavior. It is illustrative to study
the approximation

dF

dr
+ (1 + k)

F

r
=
(

E

1 + V/E0
+me

)
G

∼
(
E − EV

E0
+me

)
G ,

dG

dr
+ (1 − k)

G

r
= −

(
E

1 + V/E0
−me

)
F

∼ −
(
E − EV

E0
−me

)
F , (61)

where we neglected the V/E0 and higher order terms. As
we can see, in this theory, the Dirac theory is recovered
only for E/E0 ∼ 1 (lower moments),

dF

dr
+ (1 + k)

F

r
= (E − V +me)G

dG

dr
+ (1 − k)

G

r
= − (E − V −me)F . (62)
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We must remark that in the approximation of (61), the
metric divergence at r = rs (that is not a physical singu-
larity, it appears from the choice of the coordinate system)
is removed, then ξ ∼1 and rs does not exist. So, in this
case, the wave functions must be controlled only at the
physical singularity, at the origin. Considering the Frobe-
nius method, the solutions are of the type

F = ρs
N∑

n=0

anρ
ne−ρ ,

G = ρs
N∑

n=0

bnρ
ne−ρ . (63)

where ρ = βr, and after some manipulations one finds

β =
√
m2c4 − E2 (64)

and

s =

√
k2 − γ2E2

m2 . (65)

Observing the solutions (63) one can see that F (r ∼ 0)
and G(r ∼ 0) are sums of terms of the type Ce−ρρs+m(r ∼
0), and then, ψ(r = 0)=0. So, the effect of the approxima-
tion, is to remove the horizon of events, and to extend the
solution to the region r < rs. Considering the exact solu-
tion of the equation, this behavior is valid only for r > rs,
and an horizon of events exists at this surface with the
proprieties described above. But one must remark that at
the atomic level, an approximation of the order of 2.8 fm
is not so bad, in this region the wave functions are almost
negligible and for practical purposes this approximation
is reasonable.

From these expressions, it is possible to calculate the
energy spectrum. Using the standard methods [9,11,12]
one obtains

(
m2

ec
4 − E2) a2 =

E4γ2

m2
ec

4 , (66)

that has the solutions

E2 = m2
ec

4

[
−1 ±√1 + 4γ2/a2

2 γ2

]
, (67)

with
γ =

α

�c
, (68)

and

a = a(n) = n− (j + 1/2) +
√

(j + 1/2)2 − γ2 . (69)

Using only the positive root solutions of (67) the hydrogen
atom spectrum is

En = mec
2

√
2

1 +
√

1 + 4γ2/a2
. (70)

Adopting the expansion (γ2/a2 is small)√
1 + 4

γ2

a2 ∼ 1 + 2
γ2

a2 − 2
γ4

a4 + 4
γ6

a6 − 10
γ8

a8 + 28
γ10

a10 + ....

(71)
the energy spectrum (70) can be rewritten as

En =
mec

2√
1 + γ2/a2 − γ4/a4 + 2γ6/a6 − 5γ8/a8 + ...

,

(72)
where we can find explicitly the corrections of the energy
levels, due to general relativistic effects, if compared with
the standard [11,12] relativistic spectrum

En =
mec

2√
1 + γ2/a2

, (73)

that can be obtained from the Dirac equation or from the
Sommerfeld model [13].

Considering now the spectrum obtained from the exact
solution of (57), without the approximations made in (61)

EN = mec
2

√
1
2

− N2

8α2 +
N

4α

√
N2

4α2 + 2 , (74)

we will compare the theoretical results with the experi-
mental data and with the ones obtained with the Dirac
theory.

Some numerical values are shown in Table I, the ex-
perimental results [16] for the differences between the en-
ergies E(n, l, j) and the ground-state energies E1, for the
hydrogen atom and deuterium, the corresponding values
calculated with the Dirac theory (73), and the results cal-
culated in this work, with (74). Observing the table, one
can see that the accord of both theories with the hydrogen
experimental data is very good, but the results from (74)
are closer to the experimental data then the results from
(73). One must remark that spherical symmetry is not ex-
act in the hydrogen atom as the proton mass is finite, but
with a heavier nuclei, this symmetry is a better approxi-
mation, so it is interesting to observe the deuterium data.
Comparing the results form the Dirac theory (73), one can
see a better accord, and the deviations from the data are
of the order of 0.027%. Considering the spectrum (74), the
deviations are of the order of 0.005%, approximately five
times smaller.

7 Strong interactions

In this section, the implications of the theory, when strong
interactions are taken into account will be studied. The
simplest system possible is the NN interaction. If, as a
first approximation, only the long range part of the po-
tential would be considered, it should be dominated by
the one pion exchange contribution (Yukawa potential),

V (r) = g2 e−µr

r
(75)
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Table 1. Experimental energy levels (eV) for the hydrogen
atom, for the deuterium [16], and the theoretical ones, calcu-
lated with the Dirac theory (73) and with (74)

Hydrogen Deuterium Dirac Eq. (74)
E1 −13.59844 −13.60214 −13.60587−13.60298
E(2, 0, 1/2) − E1 10.19881 10.20159 10.20444 10.20172
E(3, 0, 1/2) − E1 12.08750 12.09079 12.09413 12.09127
E(4, 0, 1/2) − E1 12.74854 12.75201 12.75551 12.75263
E(5, 0, 1/2) − E1 13.05450 13.05806 13.06164 13.05875

where g2 = 13.40 is the NN coupling constant and µ is
the pion mass. As V (r) is a function only of r, if we locate
one nucleon at the origin, we would have

ξNN =
(

1 − g2 e−µr

mNc2 r

)2

. (76)

However, as it is well known, the NN potential is not cen-
tral, and there are other contributions, such as the tensor
part [17–19] that arises from more complex processes (two
pion exchange [20] and others). In order to make some esti-
mates, some symmetrical cases of the Reid [18] potentials
can be used, as they are phenomenological ones and can
give a first idea of the Schwarzschild radius. The potentials
are superpositions of Yukawa type terms,

V (1S) = −h (e−x + 39.633e−3x
)
/x , (77)

V (1D) = −h (e−x + 4.939e−2x + 154.7e−6x
)
/x , (78)

V (1S)s = − (he−x + 1650.6e−4x − 6484.2e−7x
)
/x ,

(79)

where x = 0.7 r fm−1, r is the relative radius and
h=10.463 MeV. Inserting these potentials in (39) and
equating it to 0, we will have

rs(1S) = 0.33 fm , (80)
rs(1D) = 0.44 fm , (81)
rs(1S)s ∼ 0.33 fm . (82)

Thus, the part of the source of the strong force that is
inside the horizon of events will be submitted to the the
trapping effect [14], that prevents the escape of any matter
and radiation, what means radial collapse of the source of
the strong forces.

It must be noted that the potentials containing spin
dependent terms and others were not considered, fact that
would break the spherical symmetry. However, in a first
approximation, these terms can be considered as correc-
tions to the central potential. But even if we consider these
terms, with another metric, as for example an axial sym-
metric metric, the trapping surface would still exists, con-
firming the present conclusions, and, only giving a more
accurate estimate of the size of the confining region. Col-
lapse is not an exclusive feature of spherical symmetric

Table 2. Values of the masses M compared with the experi-
mental ones [15] for some systems. The calculations are made
considering Coulomb potentials with the parameters α, m and
rs

m α rs M Mexp

(GeV) (fm) (GeV) (GeV)
Nucleon(qqq) 0.38 1.60 0.83 0.938 0.938 (proton)
J/ψ(cc̄) 1.79 1.00 0.11 3.10 3.10
Υ (bb̄) 5.50 1.05 0.05 9.47 9.46

systems, as it was stated in [14], deviations from spheri-
cal symmetry cannot prevent space-time singularities from
arising.

As we can see, when strong interactions are consid-
ered, the horizon of events is located in a radius that is
not negligible. The preceding example gives an estimate
in the range of 0.3-0.5 fm. This fact suggests that the
quark confinement may be understood from these results.
To understand the mechanism, let us consider that the
source of the strong force obeys some matter distribution.
Each element of this matter distribution, (that may be a
quark, but in general, this assumption is not necessary)
with mass m0, suffers the action of an attractive strong
force. Some models [21–24] consider central Coulombic po-
tentials of the type (58) to describe the effective interac-
tion to which the quarks are submitted inside an hadron.
A good example is the Cornell model [25], that with a
linear plus Coulomb central potential

V (r) = −α

r
+

r

a2 , (83)

with the parameters a ∼ 2.34 GeV−1 and α ∼ 0.5, is able
to describe the J/ψ and the Υ .

Thinking in terms of constituent quarks it is possible
to use the proposed theory to give a description of some
hadrons. Table II shows an estimate of α (for a Coulomb
potential) and of the constituent quark masses (m) in or-
der to obtain the masses (M) of the nucleon and the J/ψ
and Υ mesons. The experimental values of these masses
are also shown. These constants define the value of rs,
inside of which the quarks are expected to be confined.
The values of rs = 0.83 fm for a nucleon and 0.05 − 0.11
fm for heavy mesons are very reasonable and show that
for heavier quarks, the values of rs are smaller. Table II
was constructed with the objective of giving an idea of the
magnitude of the constants, but a detailed description of
the observed hadrons must consider additional terms in
the potential.

With these results, it is possible to calculate [26,27]

gA

gV
=

5
3
〈σZ〉 =

5
3
(1 − 2 δ) , (84)

where

δ =
2
3

∫ |G(r)2|dr∫
(|F (r)|2 + |G(r)|2) dr = 0.059 (85)

where a nucleon composed of tree quarks with jz = 1/2 is
considered. So, gA/gV =1.47, what shows a 17% deviation
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from the experimental result that is 1.259. The magnetic
moments of the proton and the neutron may also be cal-
culated

µp =
(1 − δ)mp

E0
= 2.82

µn = −2
3

(1 − δ)mp

E0
= −1.88 , (86)

that are in good agreement with the experimental results
µp=2.79 and µn=-1.91 [15].

If the whole quark content of the hadron is located
inside rs (now, spherical symmetry is a good choice), the
classical description of such a system would predict the
collapse of the whole matter in the singularity located at
r = 0. However, as we are dealing with a quantum sys-
tem, the uncertainty principle will prevent this collapse.
Consequently, there are two opposite effects acting on the
elements of matter, and the resulting effect will be radial
oscillations. This effect, in a flat Minkowski space-time
may be described by effective potentials of the form

Veff ∼ a0 + a1r + a2r
2 + ... . (87)

There is no surprise why some authors [28,29], explain
the hadronic structure with models based on harmonic
oscillator quark models or with linear potentials of the
type λr [30,25]. Inside the horizon of events, V > E0, so
(57) can be expanded as(

1 − α

m0r

)
dF

dr
+ (1 + k)

F

r

∼
{

−E
[
m0r

α
+
(m0r

α

)2
−
(m0r

α

)3
+ ...

]
+m0

}
G(

1 − α

m0r

)
dG

dr
+ (1 − k)

G

r

∼ −
{

−E
[
m0r

α
+
(m0r

α

)2
−
(m0r

α

)3
+ ...

]
−m0

}
F ,

(88)

where terms similar to the effective potential (87) appears.
So, considering a Coulombic potential (fact that is not
strictly necessary, other kind of potentials may present
similar proprieties) with the correct parameters, confine-
ment effects may occur, fact that is widely used, with the
addition of confining potentials in flat space-times.

8 Summary and conclusions

In this paper, quantum wave equations, based on the gen-
eral relativity, in the Schwarzschild metric, have been ob-
tained. Investigating the hydrogen atom spectrum, the ap-
proximate expression resulting from the theory (70) is in
accord with the experimental values, and shows a small
improvement due to the general relativistic corrections,
when compared with the standard relativistic spectrum
(73). Although, if the exact solution is considered, the

corrections are not so small and (74) gives a significant
improvement of the accord with the experimental data,
specially with the deuteruim spectrum.

An interesting feature of the theory, is that in the
Schwarzschild metric, the horizon of events appears for
r = rs, with a value that is not negligible, as it happens
when the gravitational interaction is considered. When
considering the strong interaction, rs shows a region inside
the hadron, where confinement arises. From this theory,
confinement may be considered as an intrinsic propriety of
the space-time, that when interactions with large coupling
constants are considered, generates trapping surfaces. On
the other hand, no collapse for r = 0 is expected, the
uncertainty principle forbids it. ξ as defined in (39) is a
function of α/m, so, in Nature, α and m are such that the
confinement conditions are filled and in a region with the
observed size (some examples are shown in Table II).

Thinking matter as composed of small black holes may
seem a weird idea, but no one has actually seen a quark,
or an element of strongly interacting matter, and in this
sense, a black hole is quite reasonable. At astronomical
level also, it is possible to imagine systems that cannot be
seen, due to the curvature caused by electromagnetic or
strong forces, and maybe giving an important contribution
to the mass of the universe.

The most important feature of the theory, is the fact
that the insertion of general relativistic aspects in the
quantum theory generates results that are in accord with
the phenomenology of the considered systems.
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